Maximum disorder model for dense steady-state flow of granular materials
نویسندگان
چکیده
منابع مشابه
Nonlinear elasto-plastic model for dense granular flow
This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity (Jiang and Liu 2003) and rate-sensitive plastic flow (Jop et al. 2006) are combined into one universal granular continuum law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D f...
متن کاملNonlocal constitutive relation for steady granular flow.
Extending recent modeling efforts for emulsions, we propose a nonlocal fluidity relation for flowing granular materials, capturing several known finite-size effects observed in steady flow. We express the local Bagnold-type granular flow law in terms of a fluidity ratio and then extend it with a particular Laplacian term that is scaled by the grain size. The resulting model is calibrated agains...
متن کاملFlow of wet granular materials.
The transition from frictional to lubricated flows of a dense suspension of non-Brownian particles is studied. The pertinent parameter characterizing this transition is the Leighton number Le=eta(s)gamma / sigma, the ratio of lubrication to frictional forces. Le defines a critical shear rate below which no steady flow without localization exists. In the frictional regime the shear flow is local...
متن کاملTrajectory entanglement in dense granular materials
The particle-scale dynamics of granular materials have commonly been characterized by the self-diffusion coefficient D. However, this measure discards the collective and topological information known to be an important characteristic of particle trajectories in dense systems. Direct measurement of the entanglement of particle space–time trajectories can be obtained via the topological braid ent...
متن کاملStochastic flow rule for granular materials.
There have been many attempts to derive continuum models for dense granular flow, but a general theory is still lacking. Here, we start with Mohr-Coulomb plasticity for quasi-two-dimensional granular materials to calculate (average) stresses and slip planes, but we propose a "stochastic flow rule" (SFR) to replace the principle of coaxiality in classical plasticity. The SFR takes into account t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mechanics of Materials
سال: 2016
ISSN: 0167-6636
DOI: 10.1016/j.mechmat.2015.10.008